Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Endocrines ; 3(3):552-559, 2022.
Article in English | MDPI | ID: covidwho-2009999

ABSTRACT

The spread of severe acute respiratory syndrome-Coronavirus 2 (SARS-CoV-2) around the world has rapidly sparked the interest of the scientific community to discover its implications in human health. Many studies have suggested that SARS-CoV-2 is directly or indirectly involved in the male reproductive tract impairment. Some evidence supports the possible role of the virus in male infertility. Therefore, this review aims to summarize the relationship between the male urogenital tract, male fertility, and the gonadal hormone profile. The testis is one of the organs with the highest expression of the angiotensin-converting enzyme (ACE) 2-receptor that allows the virus to penetrate human cells. Orchitis is a possible clinical manifestation of COVID-19 and testicular damage has been found on autopsy in the testes of patients who died from the disease. SARS-CoV-2 infection can compromise the blood-testis barrier, favoring testicular damage and the production of anti-sperm autoantibodies. Some studies have detected the presence of SARS-CoV-2 in semen and a high percentage of patients with COVID-19 have altered sperm parameters compared to controls. Finally, lower testosterone levels, higher luteinizing hormone (LH) levels, and decreased follicle-stimulating (FSH)/LH and testosterone/LH ratios suggest primary testicular damage. In conclusion, further studies are needed to evaluate the exact mechanisms by which SARS-CoV-2 affects the male reproductive system and fertility and to evaluate the reversibility of its long-term effects.

3.
Front Endocrinol (Lausanne) ; 12: 694325, 2021.
Article in English | MEDLINE | ID: covidwho-1394753

ABSTRACT

Endocrine diseases have a considerable impact on public health from an epidemiological point of view and because they may cause long-term disability, alteration of the quality-of-life of the affected patients, and are the fifth leading cause of death. In this extensive review of the literature, we have evaluated the prevalence of the different disorders of endocrine interest in the world and Italy, highlighting their epidemiological, clinical, and economic impact.


Subject(s)
Endocrine System Diseases/epidemiology , Global Health/statistics & numerical data , Disabled Persons/statistics & numerical data , Humans , Italy/epidemiology , Prevalence , Quality of Life , Risk Factors
4.
EClinicalMedicine ; 37: 100967, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1275284

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 19 (COVID-19), a respiratory infection that, starting from December 2019, has spread around the world in a few months, becoming a pandemic. The lack of initial knowledge on its management has led to a great effort in developing vaccines and in finding therapeutic weapons capable of improving the clinical outcome of the affected patients. In particular, the possible role of vitamin D status in the management of COVID-19 has been widely analysed, resulting in a great amount of data. This systematic review and meta-analysis aimed to assess whether hypovitaminosis D is a risk factor for developing SARS-CoV-2 infection and whether it affects the worsening of the clinical course of COVID-19. METHODS: Data were extracted through extensive searches in the Pubmed, MEDLINE, Cochrane, Academic One Files, Google Scholar, and Scopus databases from December 2019 to January 2021, using the keywords: "Vitamin D", "25 hydroxy Vitamin D", "25 hydroxycholecalciferol", "cholecalciferol", "COVID 19″, "SARS-CoV-2″. We included observational cohort, cross-sectional, and case-control studies that evaluated differences in serum levels of 25­hydroxy-cholecalciferol [25(OH)D] in patients who were positive or negative for SARS-CoV-2, in patients with mild or severe forms of COVID-19, and in patients who died or were discharged from the hospital. Finally, studies that evaluated the risk of developing severe illness or death in patients with vitamin D deficiency (VDD), defined as levels of 25(OH)D <20 ng/ml, were also included. We calculated the mean difference (MD) and the 95% confidence intervals (CI) for quantitative variables such as 25(OH)D levels in patients with or without SARS-CoV-2 infection, in those with mild vs. severe COVID-19, or those who have died vs. those who have been discharged. Instead, we calculated odds ratios and 95% CI for qualitative ones, such as the number of patients with severe illness/death in the presence of VDD vs. those with normal serum 25(OH)D levels. A p-value lower than 0.05 was considered statistically significant. The study was registered on PROSPERO (CRD42021241473). FINDINGS: Out of 662 records, 30 articles met inclusion criteria and, therefore, were included in the meta-analysis. We found that the serum levels of 25(OH)D were significantly lower in patients with SARS-CoV-2 infection than in negative ones [MD -3.99 (-5.34, -2.64); p <0.00001; I2= 95%]. Furthermore, its levels were significantly lower in patients with severe disease [MD -6.88 (-9.74, -4.03); p <0.00001; I2=98%] and in those who died of COVID-19 [MD -8.01 (-12.50, -3.51); p = 0.0005; I2=86%]. Finally, patients with VDD had an increased risk of developing severe disease [OR 4.58 (2.24, 9.35); p <0.0001; I2=84%] but not a fatal outcome [OR 4.92 (0.83, 29.31); p = 0.08; I2=94%]. INTERPRETATION: This meta-analysis revealed a large heterogeneity of the studies included due to the different enrolment criteria of patient samples (age, body mass index, ethnicity, comorbidities), the country where they live, all factors influencing serum 25(OH)D levels, and the different criteria used to define the severity of COVID-19. Furthermore, the observational nature of these studies does not allow to establish a cause-effect relationship, even taking into account that 25(OH)D represents a marker of acute inflammation. Treatment with vitamin D might be considered for the primary prevention of SARS-CoV-2 infection and the management of patients with COVID-19. However, further intervention studies are needed to prove this hypothesis.

6.
Endocrine ; 68(3): 467-470, 2020 06.
Article in English | MEDLINE | ID: covidwho-459439

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is centralizing the interest of the scientific world. In the next months, long-term consequences on the endocrine system may arise following COVID-19. In this article, we hypothesized the effects of SARS-CoV-2 taking into account what learned from the severe acute respiratory syndrome coronavirus (SARS-CoV) that caused SARS in 2003.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Endocrine Glands/virology , Endocrine System Diseases/metabolism , Endocrine System Diseases/virology , Pneumonia, Viral/complications , Severe Acute Respiratory Syndrome/complications , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/virology , Female , Humans , Male , Pandemics , Peptidyl-Dipeptidase A , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL